Блок галогенных ламп
Блок галогенных ламп состоит из:
На трансформаторах для галогенных ламп я останавливаться не буду — об этом есть отдельная и очень информативная статья (разновидности, выбор и схемы подключения трансформаторов для галогенных ламп).
Здесь лишь укажу, что в нашей люстре для питания галогенных ламп применяются электронные трансформаторы Jindel GET-08 напряжением 220/12 (В) и мощностью 160 (Вт).
В качестве нагрузки к трансформатору подключены галогенные лампы с цоколем G4, мощностью 20 (Вт) в количестве 6 штук. Каждая лампа подключается к выводам трансформатора параллельно.
Внимание! Не в коем разе не устанавливайте в люстру галогенные лампы бОльшей мощности, иначе выйдет из строя трансформатор или cплавятся патроны.
Вернемся к следующему фрагменту схемы.
К первому каналу (Brown wire) контроллера подключен электронный трансформатор для 1-ой группы галогенных ламп.
Цветовая маркировка питающих проводов
у электронного трансформатора выполнена, согласно ПУЭ:
Провода на выходе имеют следующие цвета:
Все соединения проводов в люстре выполнены с помощью концевых изолированных заглушек (КИЗ).
Заглушка изготовлена из прозрачного нейлона, через который видно глубину захода жил в гильзу и получаемый результат после опрессовки.
Затем получившееся изолированное соединение еще дополнительно изолируют с помощью термоусадочной трубки, а кончик стягивают стяжкой-хомутом. Получается достаточно надежное и качественное соединение.
Ко второму каналу (White wire) контроллера подключен электронный трансформатор для 2-ой группы галогенных ламп.
Цветовая маркировка проводов здесь аналогичная, как и у первого трансформатора.
Напомню, что галогенные лампы нельзя трогать голыми руками за колбу — только через перчатку, салфетку или тряпочку, иначе они быстро выйдут из строя.
Блок радиоуправления люстрой
Блок радиоуправления люстрой или контроллер — по сути, это и есть беспроводной выключатель, которым можно управлять с помощью пульта управления (ПУ) или с помощью обычного одноклавишного выключателя. Этот блок радиоуправления еще называют свитчем, что с перевода от английского означает «переключатель».
В рассматриваемой люстре установлен радиоуправляемый блок Wireless Switch типа Y-7E.
Технические характеристики контроллера Wireless Switch Y-7E:
Схема подключения контроллера Wireless Switch Y-7E изображена на его корпусе.
Питание контроллера осуществляется через одноклавишный выключатель (на схеме он обозначен буквой К) следующим образом:
Для наглядности и более лучшего понимания схемы подключения люстры с пультом управления, я буду выкладывать ее последовательно в виде фрагментов.
Вот фрагмент схемы питания контроллера Y-7E через одноклавишный выключатель.
Для тех кто забыл, как подключается одноклавишный выключатель — вот отдельная статья Вам в помощь.
Контроллер Wireless Switch типа Y-7E имеет три выходных канала со следующей маркировкой проводов:
Оставшийся один белый проводник — это и есть антенна приемника сигналов с пульта управления (ПУ). Его никуда подключать не нужно.
Фрагмент схемы подключения контроллера Y-7E без подключенной нагрузки.
Как видите, питающий ноль (N) и общий ноль на выходе контроллера (N) имеют одинаковый цвет проводов. Это связано с тем, что этот проводник единый и он не разрывается в контроллере — эти два проводника припаяны на одну клемму. В принципе, их можно менять местами.
А вот внешний вид платы контроллера Y-7E, но мы к ней еще вернемся.
Как я уже говорил чуть выше, наш контроллер имеет три выходных канала, а значит к нему можно подключить три независимые группы освещения. В нашей люстре это:
Да, кстати, помимо трехканальных контроллеров, встречаются: одноканальные, двухканальные и даже четырехканальные. Смысл такой же, разница лишь в количестве выходных каналов и алгоритме управления контроллером, поэтому рассматривать их отдельно я не буду.
С выходными каналами разобрались, теперь перейдем к нагрузкам.
Диагностика и ремонт люстры с пультом управления своими руками
Со схемой подключения люстры с пультом управления мы разобрались, а теперь нужно диагностировать нашу неисправность.
Напомню Вам, что рассматриваемая люстра не включается, ни с пульта управления, ни от выключателя.
В принципе, все просто. Раз нет радиоуправления, то значит в первую очередь под подозрение попадает контроллер (свитч). Но нужно на 100% убедиться в этом. Поэтому я решил исключить его из схемы и подключить все три группы освещения на прямую к сети 220 (В), чтобы проверить исправность электронных трансформаторов для галогенных ламп и драйвера для светодиодной подсветки.
Для этого я собрал следующую схему.
В качестве временных соединений я применил клеммы Wago 222 серии.
Включаем автомат и смотрим. Все лампы должны загореться, при условии, что они исправны и исправны их блоки питания. Как видите, в моем случае все лампы горят, за исключением пару-тройку галогенных лампочек.
Перегоревшие галогенки я сразу же заменю на галогенки с аналогичными параметрами: цоколь G4, напряжение 12 (В), мощность 20 (Вт) от Навигатора.
Отсюда делаем очевидный вывод, что причина неисправности в люстре найдена — вышел из строя свитч Y-7E.
При внешнем осмотре платы Y-7E я не увидел сгоревших и обуглившихся элементов.
Только вот на конденсаторе МКР-Х2 я заметил какую-то «дорожку», но скорее всего так небрежно капнули заводской лак.
Кстати, питание контроллера осуществляется бестрансформаторным способом по схеме с гасящим конденсатором, т.е. к сети 220 (В) последовательно подключены: конденсатор МКР-Х2, диодный мост, стабилитрон и нагрузка. На конденсаторе «падает» лишнее напряжение сети, а на выходе диодного моста напряжение составляет уже около 12-13 (В) постоянного тока. Приемник сигналов запитан от источника 5 (В), который преобразуется от напряжения 12 (В).
К напряжению 12 (В) подключены катушки реле (синие блоки), контакты которых коммутируют нагрузку выходных каналов.
Как видите, контакты реле рассчитаны на ток до 10 (А) при напряжении 240 (В), хотя в технических характеристиках мощность канала ограничивается мощностью 1000 (Вт) или током 4,5 (А), т.е. даже имеется еще некоторый запас.
Драйвер последовательного соединения светодиодов
На корпусе этого простейшего устройства – гордая надпись LEDDRIVER.
Вообще китайцы любые преобразователи питания именуют драйверами, поэтому обольщаться не надо.
Посмотрим поближе, что на нём написано:
Разберём каждый параметр блока питания:
- MHEN – торговая марка. Идентичные устройства выпускаются под брендами Jindel, ALED, Junyi, Jing Yi, и под другими труднопроизносимыми названиями.
- LED DRIVER – водитель диода, как переводит автоматический переводчик. Может быть написано LED Controller.
- 21-30 pcs – количество светодиодов, которое можно подключать последовательно к этому устройству.
- Model : GEL-11101A – модель, также она указана на плате.
- Input : AC220-240 V 50 Hz. Тут должно быть всё понятно.
- Current : DC 60mA Max. Это максимальный ток, который никак не стабилизируется, его стабилизируют светодиоды, подключенные к выходу. Подробнее, как так происходит, я писал в статье про Устройство и подключение светодиодных лент.
- Output : Establish DC 3,0-3,2V. Фактически, это напряжение на одном светодиоде, когда включено количество в указанных пределах (21-30 шт.).
- LED 30 pcs Max – максимальное количество светодиодов.
- Ta, Tc – температура окружающей среды и корпуса устройства.
- Jindel Electric – китайский производитель, специализирующийся на простой копеечной бытовой электронике.
Как восстановить светодиодную лампу за 2 минуты при минимальных навыках работы с паяльником и знаниях об электронике
Исторически так сложилось, что в моем загородном доме все освещение сделано с помощью светодиодных ламп мощностью 10-11, а в последнее время и 12-13 вт с цоколем Е27. Лампы накаливания на площадь 200 м2 тратили бы слишком много электроэнергии, что не вписывалось бы в концепцию моего энергоэффективного дома с приличным утеплением, твердотопливным дровяным котлом, бесперебойником на автомобильных аккумуляторах и рекуператором. Люминесцентные «энергосберегайки» я невзлюбил с первого взгляда — они часто перегорают, не имеют той энергоэффективности что светодиодные, хрупкие, токсичные при случайном разбивании, мерцают и имеют неприятный спектр.
Покупать дорогие светодиодные лампы лучшего качества или подешевле с сомнительным качеством? Я решил что буду покупать дешевые, по цене до 120 рублей за штуку, что с учетом периодических скидок в сетевых магазинах типа Леруа Мерлен вполне реально, а при заявленном сроке службы и энергоэффективности выглядит неплохим выбором. За несколько лет чего я только не перепробовал — всякие Космос, Camelion, Фотон, Bellight, Эра, Wolta и т.п… Из последних покупок — 13 ваттные лампы Norma стандартного размера по приемлемой цене 100 с небольшим рублей.
Лампа действительно яркая, инструментальных замеров я не проводил, но визуально светит ярче чем 11 и 12 ваттки того же и аналогичных производителей.
25000 часов работы? Ха-ха. Грубо говоря 3 года непрерывной работы? Ни одна лампа у меня столько не светила, перегорают раньше, как ни крути.
3 года гарантии, но 27 лет работы при условии использования 2.5 часа в сутки? Ха-ха-ха. Больше похоже на 3 года работы при использовании 2.5 часа в сутки, если усреднить те сроки службы, на которых перегорали мои лампы, купленные до этого.
Итак, мы имеем достаточно большой ассортимент неплохих по соотношению цена-яркость недорогих светодиодных ламп среднего качества, которые, к сожалению, склонны внезапно перегорать задолго до заявленного конца срока службы. Почему бы не попробовать продлить их жизнь несложным ремонтом?
Светодиодная лампа устроена довольно просто. Корпус, состоящий из цоколя, теплоотводящего радиатора в средней части и матового рассеивателя, драйвер (плата с микросхемой, диодным мостиком и несколькими конденсаторами) для обеспечения стабильных параметров питания светодиодов и плата со светодиодами.
Чтобы добраться до внутренностей лампы, нам нужно тонким ножом пройтись по щели между плафоном-рассеивателем и средней частью корпуса лампы, они соединены чем-то типа герметика, который легко разрезать и, поддев плафон кончиком ножа, вытащить его из защелок средней части корпуса. Обратная сборка лампы производится простым защелкиванием плафона на свое место, при необходимости промазав место контакта силиконовым герметиком.
Если хочется оценить состояние конденсаторов, трансформатора и микросхемы драйвера — аналогичным способом подрезаем и поддеваем плату со светодиодами и отделяем ее от средней части корпуса
Причин, по которым светодиодная лампа может перестать гореть, может быть несколько. Это может быть вспухание или короткое замыкание в одном из конденсаторов, перегорание микросхемы на драйвере, потеря контакта драйвера с цоколем (с удивлением обнаружил в лампочке Wolta драйвер не припаянный к цоколю, а опирающийся на него ножками-контактами). Наиболее частой причиной выхода лампочки из строя является перегорание одного из светодиодов на плате.
Ремонт в случае вспухания и выхода из строя конденсаторов, микросхемы, диодного мостика и т.п. я рассматривать не буду, т.к. данная статья посвящена простому двухминутному ремонту лампочки, доступному каждому, кто умеет держать в руках паяльник.
Ремонт, связанный с большими трудозатратами по выпаиванию, тестированию, покупке и замене радиодеталей, представляется мне нецелесообразным по соотношению потраченное время/сэкономленные деньги.
Светодиоды на плате соединены последовательно — по одному или блоками из 2-4 штук. В случае если в блоке один светодиод, как в лампочках стандартного типоразмера, при его перегорании размыкается вся цепь и остальные светодиоды перестают гореть т.к. через них перестает проходить электрический ток.
Перегоревший светодиод чаще всего можно определить визуально — он раскрошился или имеет черную точку или потемнение.
Итак, чтобы заставить светодиоды гореть, нам нужно восстановить цепь. Можно пойти по сложному пути — заказать светодиоды такого же номинала по напряжению и силе тока, или использовать как донор одну из лампочек такого же типа — отпаять от нее светодиоды, припаять к ремонтируемой лампе взамен испорченного, но мы уже решили, что наш способ ремонта — для тех, кто не имеет особых навыков работы с мелкими радиодеталями и не сможет воспользоваться столом для нагрева или феном для выпаивания светодиодов с лампы-донора и тем более не сможет припаять микродеталь миллиметрового размера аккуратно на плату при том, что контакты находятся в труднодоступном месте.
Значит нам остается восстановить цепь закорачиванием испорченного светодиода.
Выкрашиваем его отверткой, шилом или ножом, оголяем контакты, капаем на них флюсом — паяльной кислотой, канифолью и т.п. и наносим сверху капельку припоя, который соединит эти контакты и восстановит целостность цепи.
Выполнение этой процедуры займет не больше времени, чем прочитать ее описание.
Есть ли недостатки у данного метода? Очевидно, есть. Например, если у нас в цепи было 18 светодиодов напряжением 9 вольт (суммарное напряжение 162 вольта), то теперь в цепи у нас 17 светодиодов, и на каждый приходится уже не 9, а 9.53 вольта, что, конечно, заставит их гореть немного ярче, но и сократит срок их службы.
Тем не менее, если вы не эксперт в пайке и электронике и не сможете легко найти или выпаять из лампы-донора светодиод на замену сгоревшему, то и такой способ ремонта лампочки можно считать целесообразным, ведь альтернативой обычно является выбрасывание этой лампы. Не думаю что имеет большой смысл везти ее менять по гарантии, т.к. потраченное на это время вряд ли окупит стоимость лампы.
Видео с примером ремонта светодиодной лампочки Camelion:
Какие светодиоды используются в люстрах
Светодиоды бывают одноцветные (в люстрах, как правило, используются синие или белые), двухцветные (красно-синие), и многоцветные (например, красный-синий-зеленый). В конце статьи дам ссылки, можно будет посмотреть, что сейчас есть в продаже. Там же – много справочной информации.
Напряжение питания одноцветных светодиодов – 2..2,4 В (красный, желтый, желто-зеленый, оранжевый) или 3,0…3,6 В (белый, голубой, зеленый, пурпурный, розовый). Эти два диапазона – для светодиодов разных цветов, у них немного разные физические принципы работы. Соответственно, и яркость свечения сильно отличается.
Вот Справочная таблица по напряжениям и другим параметрам светодиодов, взята с сайта продавца:
Прямой ток (If) всех моделей равен 20 мА. Этот ток является оптимальным, с точки зрения соотношения яркость/долговечность. То есть, чем меньше ток, тем дольше светодиод будет работать. И чем больше ток, тем ярче.
Подробно я рассматривал этот аспект, в частности, в статье про установку светодиодной ленты в натяжной потолок.
Многоцветные (multi-color) можно разделить на два вида, по способу переключения цветов:
- Светодиоды без управления, с автоматическим переключением цветов. Переключение бывает быстрое и медленное, цветов два или три.
- Светодиоды с управлением, когда для включения того или иного цвета (2 или 3) нужно подать напряжение на нужный вывод светодиода. Напряжения, в зависимости от цвета могут быть разные – 2 или 3 Вольта.
Бывают светодиоды на напряжение 5В. В основном, это относится к двухцветным моделям. Тогда, применяется вот такой драйвер:
На этом драйвере написано “RB Synchronous double controller”. Количество светодиодов – 31-40 шт, напряжение на каждом – 5 В. Более подробно надписи и параметры подобных драйверов будут рассмотрены ниже.
Честно говоря, я не совсем разобрался с применение такого драйвера. Предполагаю, что он такой же, как и рассматриваемый в статье, только отличие в прямом напряжении, которое не 3В, а 5В. Кто может это подтвердить или опровергнуть – напишите, пожалуйста о своём опыте в комментариях.
Конкретной информации по по типам светодиодам в интернете мало, и использовать её трудно – ведь светодиоды прозрачные, и не имеют надписей. Остается только ориентироваться на описания у продавцов (ссылки будут в конце статьи). Либо выяснять опытным путем. Ниже, в части про ремонт, будет рассказано как.
В люстрах используются светодиоды с прозрачным круглым корпусом, диаметр – 5 (4,8) мм. Ещё особенность – светодиоды в люстрах без линзы, с укороченным корпусом, типа “соломенная шляпа”. У них широкая диаграмма направленности.
Светодиоды имеют проволочные выводы под пайку. Хотя, в люстрах их никогда не паяют, а вставляют прямо в разъем “мама”. Главное – соблюдать полярность.
Одноразовая светодиодная люстра. нет
Проверяем светодиоды
Светодиод на 3В – это не совсем обычный диод. Обычный диод можно прозвонить в прямом направлении мультиметром с установленным режимом “прозвонка полупроводников”, при этом показания будут около 800 Ом. При прозвонке светодиодов в прямом направлении светодиод горит, хоть и тускло. В обратном – не горит. Мультиметр при этом ничего не показывает. Точнее, показывает бесконечность, т.е. “1”.
Фактически, мультиметр при прозвонке – источник напряжения около 2В, и этого вполне хватает исправному светодиоду, чтобы подать признаки жизни.
Чтобы было совсем всё понятно, картинка:
Анод, на который подается “плюс” питания, длиннее катода, на который подается “минус”. На светодиоде слева схематически показан диод, чтоб было понятнее.
На анод подаём “плюс” мультиметра, на катод – “минус”. Таким образом, можно легко узнать и полярность светодиода, и его исправность, и цвет. А исходя из цвета, по таблице, приведенной выше, узнать рабочее напряжение.
В люстре, которую я ремонтировал, я начал прозванивать диоды, и понял, что их надо будет все менять. Некоторые показывали 2-3 ома в обоих направлениях, некоторые – 1000 Ом, некоторые – бесконечность. Результат неумелого ремонта. Даже, если 1 или 2 светодиода вышли из строя, стоит подумать о том, чтобы заменить все, т.к. параметры их неизбежно изменились (да, все мы стареем), а новые будут с другими параметрами.
В крайнем случае, 1 или 2 светодиода можно заменить перемычками или резистором, сопротивление которого посчитаем ниже. Перемычку можно ставить только в том случае, если оставшееся количество светодиодов не меньше того, что указано на драйвере. Иначе “везунчики” будут гореть недолго, зато ярко.
Как проверить светодиоды в люстре, нам также расскажет Елена:
Простой стабилизатор напряжения на 12 в собственными руками
Если имеются даже небольшие навыки в сборке электрической схемы, тогда стабилизатор напряжения необязательно приобретать в готовом виде. Для изготовления самодельного устройства человек потратить 50 рублей или меньше, готовая модель стоит несколько дороже.
Самый простой, но функциональный стабилизатор можно сделать своими руками без особых усилий. Импульсный прибор собрать очень сложно, особенно для новичка, а потому рассматривать стоит линейные стабилизаторы и любительские схемы на него.
Самый простейший стабилизатор напряжения 12 вольт собирается из схемы (готовой), а также резистора сопротивления. Желательно использовать микросхему LM317. Все детали будут крепиться к перфорированной панели или универсальной печатной плате. Если правильно собрать устройство и подключить его на свой автомобиль, то можно обеспечить хорошее освещение — лампочки перестанут моргать.
Схема LM317
Схема подключения
Расчеты сопротивления источника и светодиодов
Спасибо нашему преподавателю схемотехники, Шибаевой Елене Михайловне.
Теперь для интереса посчитаем выходное сопротивление источника питания и сопротивления светодиодов. В расчетах участвуют – старый добрый Ом со своим знаменитым законом и формула делителя напряжения.
Итак, для случая на 30 светодиодов имеем:
- Напряжение холостого хода источника тока – 305 В,
- Напряжение источника тока под нагрузкой – 107 В,
- Ток в цепи (да, ещё старина Кирхгоф со своим 1-м законом!) – 0,02 А.
Ток мы знаем из заявленных параметров диодов, но на эту цифру точно полагаться нельзя. Судя по напряжению на одном диоде, ток реально немного больше!
Чтобы расчеты были понятнее, прилагаю схему:
Предполагаем, что на вход схемы подается напряжение от идеального источника ЭДС с нулевым внутренним сопротивлением. Реальный источник электричества имеет внутреннее сопротивление Ri, которое мы сейчас посчитаем.
При измерении напряжения холостого хода Uн = Uхх = 305 В, поскольку входное сопротивление вольтметра гораздо больше внутреннего сопротивления источника Ri.
При подключении нагрузки Uн = 107 В, значит, напряжение, падающее на внутреннем сопротивлении источника Ri, равно 305 – 107 = 198 В.
Зная ток, посчитаем внутреннее сопротивление:
Ri = 198 В / 0,02 А = 9900 Ом.
Много это или мало? Всё познается в сравнении. В данном случае – в сравнении с сопротивлением нагрузки:
Rн = 107 В / 0,02 А = 5350 Ом.
Это – сопротивление последовательно соединенных светодиодов, когда через них протекает ток 0,02 А. Значит, сопротивление одного светодиода равно 5350 Ом / 30 = 178 Ом.
Значит, без изменения параметров схемы один светодиод можно заменить резистором 180 Ом. Это совпадает со значением, полученным опытным путем на одном светодиоде: 3,54 / 0,02 = 177 Ом.
Мы видим, что сопротивление источника электропитания больше сопротивления нагрузки. Значит – перед нами – источник тока. То есть, при изменении сопротивления нагрузки (количества светодиодов) в некоторых пределах ток почти не меняется.
Можно посчитать сопротивление диодов, когда их 22 штуки, оно будет меньше из-за того, что ток будет больше, а вольт-амперная характеристика диода нелинейна.
Режимы работы люстры с пультом управления
Как я уже говорил в начале статьи, люстрой можно управлять двумя способами: с помощью пульта дистанционного управления (наподобие выключателя Сапфир-2503) и с помощью обычного одноклавишного выключателя.
Пульт управления люстрой запрограммирован на определенную частоту и шифр радиосигнала, и может работать только с тем контроллером, который шел в комплекте. Имейте ввиду, что пульт от другой люстры никак не подойдет Вам, поэтому в случае утери пульта управления Вам однозначно придется покупать и другой контроллер.
Пульт управления люстрой имеет 4 кнопки:
При нажатии на кнопку А происходит включение первого канала контроллера, т.е. загорится 1-ая группа галогенных ламп. При повторном нажатии на кнопку А — происходит отключение первого канала. Аналогично, и с кнопками В и С, только они управляют вторым и третьим каналом, соответственно. А вот при нажатии на кнопку D происходит управление сразу всеми тремя каналами.
Если же управлять люстрой с помощью одноклавишного выключателя, то при кратковременном включении клавиши включится первый канал, при отключении и дальнейшем включении клавиши алгоритм перейдет на включение второго канала и т.д, т.е. происходит последовательное переключение каналов контроллера. А далее цикл управлением каналов повторяется.
При длительном отключении питания алгоритм контроллера сбрасывается в начальное состояние.
В принципе, если в пульте сели батарейки или Вы его вообще потеряли, то управлять люстрой вполне можно и выключателем, правда это не совсем удобно.
Стабилизатор напряжения для светодиодных ламп в авто
Итак, почему же так быстро перегорают габаритные, светодиодные лампочки или другие светодиодные лампочки, которые стоят в автомобиле, потому что в них используется в качестве драйвера обычный токоограничивающий резистор.
Как правило, светодиодные световые приборы, мощностью от 10 Вт и выше используют уже качественный импульсный стабилизатор — драйвер и такой болезнью не страдают в отличие от габаритных, дешевых светодиодных ламп.
Сначала эти лампочки начинают мерцать, то есть это уже первые признаки деградация кристалла, ну и потом они попросту перегорают. В среднем простой, светодиодной лампочки продолжительность жизни составляет один год, где-то меньше, где-то чуть больше.
Почему же так происходит?
А происходит это потому, что данный токоограничивающий резистор рассчитывается по специализированной формуле, (таких калькуляторов онлайн много в интернете) и подключается на соответствующие напряжение.
И вот тут производитель очень хитро делает, на некоторых цоколях написано 12 вольт,то есть токоограничивающий резистор для данной лампочки заточен под 12 вольт. А в автомобильной цепи, как мы знаем напряжение бывает не только 12 вольт, а доходит и до 14.5 вольт.
Так, как же сделать так, чтобы они у нас не перегорали, я тоже в своё время замучился их менять, поэтому и решил этот вопрос изучить досконально и сделать преобразователь при котором светодиодная лампочка становилась практически вечной.
Есть конечно на али экспрессе такие преобразователи, которые уже рассчитаны для этих целей,
но есть одно НО…. они выдают высокочастотные импульсные помехи, но это присуще всем импульсным источникам питания. Это даёт большие наводки, например, при использовании FM модуляторов, особенно при прослушивании радио, да даже просто наводки в акустическую систему, с этой точки зрения нужно стараться, как можно меньше наполнять свой автомобиль импульсными источниками питания.
Поэтому мы будем с вами делать линейный стабилизатор с фиксированным напряжением, который имеет большие преимущества. Первое достоинство — он стоит сущие копейки по сравнению с импульсными. Второе, то что стабилизатор линейный и не даёт вообще никаких помех и высокочастотных наводок.
Для этого нам понадобится, сам стабилизатор L7812cv,
он у нас будет рассчитан на 1.5 Ампера и пара конденсаторов на 100 n.