Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.

Содержание

Основные агрегаты и узлы, устанавливаемые на тягач при выполнении гидрофикации:

1. коробка отбора мощности;2. гидрораспределитель;3. гидравлический насос;4. система управления гидравлическим приводом;5. гидробак;6. шланги и фитинги, а также быстроразъемные (БРС) и резьбовые соединения.

Что такое гидравлическая система?

Гидравлические системы сегодня можно найти в широком спектре применений, от небольших сборочных процессов до комплексных применений в сталелитейной промышленности и тяжелой технике. Гидравлика позволяет оператору выполнять значительную работу, поднимая тяжелые грузы, поворачивая вал, сверля точные отверстия и т.д. С минимальными затратами на механическую связь за счет применения закона Паскаля.

Гидравлический пресс обычно состоит из пары цилиндров, которые соединены между собой и заполнены гидравлической жидкостью, такой как масло. По бокам этих цилиндров установлены два поршня, которые остаются в контакте с жидкостью. Когда определенное усилие прикладывается в меньшей части поршня, давление передается по всей жидкости.

Согласно упомянутому закону Паскаля, давление будет идентичным давлению, оказываемому жидкостью в другом поршне. Для получения дополнительной информации о том, как работает гидравлический цилиндр, прочтите это в статье «Как работает гидроцилиндр«.

Гидравлическая жидкость создает мощность жидкости путем прокачки жидкости через гидравлическую систему. Жидкость поступает в цилиндр через клапан, и гидравлическая энергия преобразует ее обратно в механическую энергию. Клапаны помогают направлять поток жидкости, и при необходимости давление может быть снижено.

Принцип закона Паскаля реализуется в гидравлической системе с помощью гидравлической жидкости, которая передает энергию из одной точки в другую. Поскольку гидравлическая жидкость почти несжимаемая, она может мгновенно передавать мощность.

Британский механик Джозеф Брама применил принцип закона Паскаля и разработал первый гидравлический пресс в начале промышленной революции. Его гидравлический пресс был запатентован в 1795 году, широко известный как пресс Брама. Он подсчитал, что давление, приложенное к небольшой области, преобразуется в большую силу в области, которая больше с другой стороны цилиндра.Как работает гидравлическая система?

Гидравлическая система состоит из пяти элементов: привода, насоса, регулирующих клапанов, двигателя и нагрузки. Двигателем может быть электродвигатель или двигатель любого типа. Насос действует в основном для повышения давления.

Гидравлические системы состоят из множества частей:

  • Электродвигатель приводит в действие гидравлический насос.
  • Резервуар содержит гидравлическую жидкость.
  • Гидравлический насос проталкивает жидкость через систему и преобразует механическую энергию в мощность гидравлической жидкости.
  • Клапаны регулируют поток жидкости и при необходимости сбрасывают избыточное давление из системы.
  • Гидравлический цилиндр преобразует энергию обратно в механическую энергию.

Существует много типов гидравлических систем, но каждая из них содержит те же основные компоненты, что и перечисленные. Все они предназначены для одинаковой работы.Наука, лежащая в основе гидравлики – принцип Паскаля

Наука, лежащая в основе гидравлики, называется принципом Паскаля. Закон Паскаля или принцип Паскаля, основа механики жидкости, был открыт в 1653 году и опубликован в 1663 году Блезом Паскалем. Согласно ему, если давление изменится в любой точке гидравлической жидкости, энергия будет передаваться одинаково во всех направлениях.

Согласно принципу Паскаля, давление равно силе, деленной на площадь, на которую оно действует. Давление, используемое на поршне, приводит к равному увеличению давления на втором поршне в системе. Если площадь в 10 раз превышает первую площадь, то усилие на втором поршне в 10 раз больше, даже давление одинаковое по всему цилиндру.

Гидравлический пресс создает этот эффект, основанный на принципе Паскаля. Паскаль также обнаружил, что давление в точке покоящейся жидкости одинаково во всех направлениях; давление будет одинаковым на всех плоскостях, проходящих через определенную точку.Формула закона Паскаля

Паскаль обнаружил, что изменение давления, приложенного к закрытой жидкости, передается без уменьшения в каждую точку жидкости и на стенки контейнера, который ее содержит. Это происходит потому, что жидкости почти несжимаемы, поэтому при приложении давления жидкость передает его во всех направлениях вертикально к стенкам контейнера, в котором они находятся.

В этом примере небольшая сила F1, приложенная к небольшому поршню площадью A1, вызывает увеличение давления в жидкости. Согласно принципу Паскаля, это увеличение передается большему поршню площадью A2 путем приложения силы F2 к этому поршню.

Давление-это приложенная сила к поверхности, как;

P=F/A >>> F-используемая сила, а A-площадь поверхности.

Для первого поршня сила F1 приложена к площади поверхности A1. Давление P1 тогда;

P1=F1/A1

Давление P2 во втором цилиндре с силой F2 и площадью поверхности A2 будет равно;

P2=F2/A2

Когда вы прикладываете давление(P1) в первом поршне, оно будет одинаково передаваться через замкнутую несжимаемую жидкость.

P1=P2

Гидравлическая система позволяет поднимать тяжелый груз с небольшим усилием. Это уравнение показывает, что сила F2 больше силы F1 в разы, равной соотношению площадей двух поршней. Обратите внимание, что давления в обоих поршнях по существу одинаковы, и поскольку их площади различны, то и силы различны, в результате чего соотношение между их величинами равно соотношению между их площадями.

Основные типы гидрофикации для седельных тягачей и грузовых шасси:

• одноконтурная;

• двухконтурная;

• комбинированная

Блез паскаль – отец гидравлики

Блез Паскаль (1623-1662) — французский математик, физик, изобретатель, философ и писатель. Он внес значительный вклад в науку на протяжении всей своей жизни. Паскаль внес вклад в несколько областей физики, в первую очередь в области механики жидкости и давления.

Одно из его самых известных утверждений известно как принцип Паскаля, который гласит, что –

“Давление, оказываемое на жидкость, которая не сжимается и находится в равновесии в сосуде с недеформируемыми стенками, передается с одинаковой интенсивностью во всех направлениях и во всех точках жидкости”.

Его работа в области гидродинамики и гидростатики была сосредоточена на принципах гидравлических жидкостей. Он изобрел гидравлический пресс, гидравлическое давление с умноженной силой и шприц, используемый в медицине. Он доказал, что гидростатическое давление зависит не от веса жидкости, а от перепада высот.

Виды гидравлики по сферам применения

Несмотря на общий «фундамент», гидросистемы поражают разнообразием. Начиная от базовых гидравлических конструкций, состоящих из нескольких цилиндров и трубок, и заканчивая футуристичными продуктами, в которых объединены гидроэлементы и электротехнические решения, они демонстрируют широту инженерной мысли и приносят прикладную пользу в самых разных отраслях:

  • промышленности — как элемент литейного, прессового, транспортировочного и погрузочно-разгрузочного оборудования, металлорежущих станков, конвейеров;
  • сельском хозяйстве — навесное оборудование тракторов, экскаваторов, комбайнов и бульдозеров управляется именно гидроузлами;
  • автомобильном производстве: гидравлическая тормозная система — «must have» для современного легкового и грузового автотранспорта;
  • авиакосмической отрасли: системы, независимые или объединенные с пневматикой, используются в шасси, управляющих устройствах;
  • строительстве: практически вся спецтехника оснащена гидрофицированными узлами;
  • судовой технике: гидравлические системы используются в турбинах, рулевом управлении;
  • нефте- и газодобыче, морском бурении, энергетике, лесозаготовительном и складском хозяйстве, ЖКХ и многих других сферах.
Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Гидростанция к токарному станку

В промышленности (для металлорежущих и других станков) современную производительную гидравлику используют благодаря ее способности обеспечить оптимальный режим работы с помощью бесступенчатого регулирования, получать плавные и точные движения оборудования и простоты его автоматизации.

На производственных станках широко применяют системы с автоматическим управлением, а в строительстве, благоустройстве, дорожных и других работах — экскаваторы и другую гусеничную или колесную с гидрофицированными узлами. Гидросистема работает от мотора техники (ДВС или электрического) и обеспечивает функционирование навесных элементов — ковшей, стрел, вил и так далее.

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Гидрофицированный экскаватор-погрузчик

Виды гидравлики с разными гидроприводами

В оборудовании для разных сфер используются гидроприводы одного из двух типов — гидродинамические, работающие преимущественно на кинетической энергии, или объемные. Последние используют потенциальную энергию давления жидкостей, обеспечивают большое давление и, благодаря техническому совершенству, широко используются в современных машинах.

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Пример техники с объемным гидроприводом

Объемные гидроприводы используют в большинстве современных гидросистем, устанавливаемых в прессах, экскаваторах и строительной спецтехнике, металлообрабатывающих станках и так далее. Устройства классифицируют по:

  • характеру движения выходных звеньев гидромотора — оно может быть вращательным (с ведомым валом или корпусом), поступательным или поворотным, с движением на угол до 270 градусов;
  • регулированию: регулируемые и нерегулируемые в ручном или автоматическом режиме, дроссельным, объемным или объемно-дроссельным способом;
  • схемам циркуляции рабочих жидкостей — компактной замкнутой, используемой в мобильной технике, и разомкнутой, которая сообщается с отдельным гидробаком;
  • источникам подачи жидкостей: с насосами или гидроприводами, магистральными или автономными;
  • типу двигателя — электрический, ДВС в автомобилях и спецтехнике, турбины корабля и так далее.
Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Турбина Siemens с гидроприводом

Виды конструктивных элементов гидросистемы

Прежде всего, важен тип привода — части гидравлики, преобразующей энергию. Цилиндры относятся к роторному типу, и могут направлять жидкости только в один конец или в оба (однократное или двойное действие соответственно). Усилие их направлено прямолинейно.

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Спецтехника с гидродвигателем

В сложных промышленных системах вместо рабочих цилиндров устанавливают гидродвигатели, в которые из насоса поступает жидкость, а затем возвращается в магистраль. Гидрофицированные моторы сообщают выходным звеньям вращательное движение с неограниченным углом поворота.

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Радиально-поршневой гидромотор

Потоками в системе управляют гидрораспределители — дросселирующие и направляющие. По особенностям конструкции их делят на три разновидности: золотниковые, крановые и клапанные. Наиболее востребованы в промышленности, инженерных системах и коммуникациях гидрораспределители первого типа. Золотниковые модели просты в эксплуатации, компактны и надежны.

Гидронасос — еще один принципиально важный элемент гидравлики. Оборудование, преобразующее механическую энергию в энергию давления, используют в закрытых и открытых гидросистемах. Для техники, работающей в «жестких» условиях (бурильной, горнодобывающей и так далее) устанавливают модели динамического типа — они менее чувствительны к загрязнениям и примесям.

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Гидравлический насос

Также насосы классифицируют по действию — принудительному или непринудительному. В большинстве современных гидросистем, использующих повышенное давление, устанавливают насосы первого типа. По конструкции выделяют модели:

  • шестеренчатые;
  • лопастные;
  • поршневые — аксиального и радиального типов.
  • и др.
Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Гидрофицированные манипуляторы для 3D-печати

Существует огромное количество видов использования законов гидравлики — изготовители придумывают новые модели техники и оборудования. Среди наиболее интересных — гидросистемы, устанавливаемые в манипуляторах для 3D-печати, коллаборативных роботах, медицинских микрофлюидных устройствах, авиационном и другом оборудовании. Поэтому любая классификация не может считаться полной — научный прогресс дополняет ее чуть ли не каждый день.

А еще интересно:  Почему моргает датчик давления в шинах

Гидравлический (масляный) бак

Масляный гидробак, предназначенный для рабочей жидкости, имеет объем 86–250 литров. Его монтируют на боковую часть рамы или за кабину. В нем предусмотрены воздушный и масляный фильтры.

Гидравлический насос

Данное устройство служит для создания давления и объёма рабочего тела в гидравлической системе. Для автомобильной гидравлики существует два основных типа насосов, шестерёнчатый и поршневой. В зависимости от назначения гидравлической системы, подбирается тип, а так же производительность насоса.

Гидронасосы. типы. характеристики преимущества и недостатки различных конструкций.

Если вы хотите сказать спасибо автору, просто нажмите кнопку: 

2. Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.

Гидравлические насосы предназначены для преобразования механический энергии (крутящий момент, частоту вращения)  в гидравлическую (подача, давление). Существует большое разнообразие типов и конструкций гидравлических насосов, но всех их объединяет единый принцип действия – вытеснение жидкости. Насосы использующие принцип вытеснения называются объемными. Во время работы внутри насоса образуются изолированные камеры, в которых рабочая жидкость перемещается из полости всасывания в полость нагнетания. Поскольку между полостями всасывания и нагнетания не существует прямого соединения, объемные насосы очень хорошо приспособлены для работы в условиях высокого давления в гидросистеме.

Основными параметрами гидронасосов являются:

• Рабочий объем (удельная подача) [см3/об] – это объем жидкости вытесняемый насосом за 1 оборот вала.

• Максимальное рабочее давлени [МПа, bar]

• Максимальная частота вращения [об/мин]

Классификация объемных насосов по типу вытесняющего элемента показана на Схеме 1.

1.jpg

Схема 1.

При выборе типа насоса для гидросистемы необходимо учитывать ряд факторов свойственных определенным типам насосов и особенности разрабатываемой гидросистемы. Основными критериями выбора насоса являются:

  • Диапазон рабочих давлений
  • Интервал частот вращения
  • Диапазон значений вязкости рабочей жидкости
  • Габаритные размеры
  • Доступность конструкции для обслуживания
  • Стоимость

Далее будут рассмотрены различные типы насосов с описанием их конструктивных преимуществ и недостатков.

1.Поршневые Насосы

1.1 Ручные насосы

Простейшим насосом использующим принцип вытеснения жидкости является ручной насос. Данный вид насосов используется в современной технике для обеспечения гидравлической энергией  исполнительных гидродвигателей (в основном линейного перемещения) вспомогательных механизмов. Вторым, часто встречающимся, назначением ручных насосов в гидросистемах является использование его как аварийного источника гидравлической энергии.Давления развиваемые этими насосами лежат в диапазоне до 50МПа, но чаще всего данные насосы используют на давлениях не более 10-15МПа. Рабочий объем до 70 см3. Рабочий объем для ручного насоса это суммарный объем жидкости вытесняемый им за прямой и обратный ход рукоятки. Обычно насосы с малым рабочим объемом способны достигать больших величин рабочего давления, это связано с ограничением силы прикладываемой к рычагу пользователем.

Принцип действия ручного насоса одностороннего действия изображен на рис.1. При ходе поршня вверх через обратный клапан КО2 происходит всасывание жидкости из бака, клапан КО1 при этом закрыт. При ходе поршня вниз происходит вытеснение жидкости через клапан КО1 в напорный трубопровод, клапан КО2 – закрыт.

На рис. 2 показан  ручной насос двустороннего действия. При ходе поршня вверх через обратный клапан КО4 происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости внапорный трубопровод через клапан КО1. Клапана КО2 и КО3 при этом закрыты. При ходе поршня вниз через обратный клапан КО2происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости в напорный трубопровод через клапан КО3. Клапана КО1 и КО4 при этом закрыты.

Внешний вид ручного насоса показан на рис. 3.

2.jpg

Рис. 1

ручной насос двустороннего действия

Рис. 2

4.jpg

Рис. 3

Достоинства и недостатки:

Достоинства

  • простота конструкции.
  • высокая надежность.
  • отсутствие приводного двигателя.

Недостатки

  • Низкая производительность

1.2Радиально-поршневые насосы

Радиально-поршневые насосы это разновидность роторно-поршневыхгидромашин. Эти насосы применяются для гидросистем с высоким давлением (свыше 40МПа). Эти насосы способны длительно создавать давления до 100МПа.Отличительной особенностью насосов данного типа является их тихоходность, частота вращения насосов данного типакак правило не превышает 1500-2000 об/мин. Частоты вращения до 3000 об/мин можно встретить только для насосов рабочим объемом не более 2-3 см3/об.

Радиально-поршневые насосы бывают двух типов:

  • С эксцентричным ротором
  • С эксцентричным валом

Радиально-поршневой насос с эксцентричным ротором изображен на рис. 4. Конструктивно поршневая группа насоса установлена в роторе насоса. Ось вращения ротора и ось неподвижного статора смещены на величину эксцентриситета e. При вращении ротора поршни совершают поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет золотниковое распределение. При вращении цилиндры поочередно соединяются с полостями слива и нагнетания разделенными перегородкой золотника, расположенного в центре.

5.jpg

Рис.4

Радиально-поршневой насос с эксцентричным валом изображен на рис. 5. Конструктивно поршневая группа насоса установлена в статоре насоса. Ось вращения вала и ось неподвижного статора совпадают, но на валу имеется кулачок, который смещен на величину е относительно центра вращения вала. При вращении вала, кулачок заставляет поршни совершать поступательное движение. Величина хода составит 2e.  Насос данной конструкции имеет клапанное распределение.  При вращении вала поршни выдвигаясь из цилиндров наполняются жидкостью через клапана всасывания. Нагнетание жидкости происходит через клапана нагнетания  при вхождении поршней в цилиндры.

Данная конструкция редко используется как насосная и намного чаще используется в гидромоторах, о которых будет рассказано в одной из следующих статей.

6.jpg

Рис.5

Рабочий объем гидромашин данного типа можно рассчитать по формуле:

7.jpg

где       z – число поршней

dп – диаметр поршня

е – эксцентриситет

Радиально поршневые насосы могут иметь конструкцию с переменным рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета е.

Из двух описанных конструкций большее распостранение получили радиально-поршневые насосы с эксцентричным валом. Это явилось следствием более простой конструкции. Фотографии радиально-поршневых насосов с эксцентричным валом представлены на рис. 6.

8.jpg

Рис. 6(а)

9.jpg

Рис. 6(б)

Достоинства и недостатки насосов радиально-поршневого:

Достоинства

  • простота конструкции.
  • высокая надежность.
  • Работа на давлениях до 100МПа.
  • Относительно малый осевой размер.

Недостатки

  • Высокая пульсация давления
  • Малые частоты вращения вала
  • Больший вес конструкции по отношению к аксиально-поршневым машинам.

1.3Аксиально-поршневые насосы

Аксиально-поршневые насосы – это разновидность роторно-поршневых гидромашин с аксиальным расположением цилиндров (т.е. располагаются вокруг оси вращения блока цилиндров, параллельны или располагаются под небольшим углом к оси).Существует деление по типу вытеснителя на аксиально-плунжерные и аксиально-поршневые гидромашины. Отличаются они тем, что в первых в качестве вытеснителей используются плунжеры, а во вторых — поршни см. рис. 7.

10.jpg

Рис. 7

Насосы данного типа являются самыми распространёнными в современных гидроприводах. По количеству конструктивных исполнений они во много раз превосходят прочие типы гидронасосов. Эти насосы обладают наилучшими габаритно-весовыми характеристики (иными словами имеют высокую удельную мощность), обладают высоким КПД.Насосы этого типа способны даватьдавление до 40МПа и работать на высоких частотах вращения (насосы общего применения имеют частоты до 4000 об/мин, но существуют специализированные насосы этого типа с частотами вращения до 20000 об/мин).

Все аксиально поршневые насосы можно разделить на 2 типа:

  • Снаклонным блоком (ось вращения блока цилиндров располагается по углом к оси вращения вала)
  • С наклоннымдиском (ось вращения блока цилиндров совпадает с осью вращения вала)

На рис. 8 показана конструктивная схема аксиально поршневого насоса с наклонным блоком. При вращении вала насоса, вращается шарнирно соединенный с ним блок цилиндров. При этом поршни совершают поступательные движения. Блок цилиндров прилегает к распределителю  который имеет два паза: один паз соединен с линией всасывания, а другой с линией нагнетания. При выдвижении поршня цилиндр движется над пазом всасывания (см. вид А рис.8) и наполняется жидкостью. После прохождения нижней мертвой точки (точки в которой поршень находится в максимально выдвинутом состоянии) цилиндр соединяется с пазом нагнетания в распределителе и начинает вытеснять жидкость из цилиндра пока не достигнет верхней мертвой точки (точки в которой поршень находится в максимально утоленном в цилиндр состоянии). Далее Цилиндр снова соединяется с пазом всасывания и цикл повторяется. Система распределения используемая в данной конструкции насоса называется золотниковой.

11.jpg

Рис.8

Утечки из цилиндров во время нагнетания скапливаются в корпусе насоса. Чтобы не допустить роста давления в корпусе, на насосах данной конструкции имеется линия дренажа. Если ее заглушить, то это приведет к выходу из строя манжеты вала и нарушению герметичности насоса, а в некоторых случаях – к разрушению корпуса насоса.

На рис.9 показана конструкция насоса с наклонным диском.

13.jpg

Принцип работы насоса с наклонным диском аналогичен работе насоса с наклонным блоком. Насос данной конструкции так-же имеет золотниковое распределение.  Отличие конструкций состоит в соосности осей вала и блока цилиндров.

Рабочий объем аксиально-поршневых насосов можно рассчитать из следующего выражения:

14.jpg

где       z – число поршней

dп – диаметр поршня

Dц– диаметр расположения цилиндров

γ – угол наклона диска(блока)

Для насосов конструкций рис. 8,9возможны исполнения с изменяемым рабочим объемом. Изменение рабочего объема происходит за чет изменения угла наклона диска или блока (в зависимости от конструкции).

Для аксиально-поршневых насосов необходим механизм синхронизации вращения приводного вала и блока цилиндров. Существует четыре основных способа такой синхронизации:

  • Синхронизация одинарным (силовым) карданом
  • Синхронизация двойным (несиловым) карданом
  • Синхронизация шатунами поршней (бескарданная схема)
  • Синхронизация коническим зубчатым зацеплением.

Аксиально-поршневой насос с наклонным блоком представлен на рис. 10. В данной конструкции синхронизация вращения вала и блока цилиндров осуществлена посредством конической зубчатой передачи.

Регулируемый аксиально-поршневой насос с наклонным диском  представлен на рис. 11.

15.jpg

16.jpg

Рис. 11

Рассмотрим еще одну довольно распространённую конструкцию  насоса с наклонным диском. Это конструкция аксиально-плунжерного насоса с неподвижным блоком, клапанным распределением и приводом плунжеровкулачкового типа (вращающейся наклонной шайбой). По ГОСТ  17398-72 этот тип насоса классифицируется как аксиально-кулачковый. Схема такого насоса показана на рис. 12.

17.jpg

Рис. 12

Эта конструкция имеет принципиальные отличия от конструкции изображенной на рис. 9. Насос на рис. 12 в отличие от предыдущей конструкции на рис. 9 имеет неподвижный блок цилиндров, совмещенный с корпусом, наклонный диск объединенный с валом и клапанное распределение рабочей жидкости. Ход плунжера определяется вращением наклонного диска. Система распределения работает следующим образом: выдвигаясь из цилиндра поршень создает в камере разряжение и через клапан всасывания камера наполняется жидкостью из полости корпуса, объединенной со всасыванием. При вхождении в цилиндр клапан всасывания находится в закрытом состоянии, происходит вытеснение рабочей жидкости из рабочей камеры через клапан нагнетания в линию нагнетания.

А еще интересно:  Лампы, применяемые в автомобиле Шевроле Нива - автомануал заказ автокниг с доставкой в любую точку мира

Некоторые конструкции аксиально-кулачковых насосов могут работать на давлениях до 70МПа.

Примечательным является факт отсутствия в данной конструкции линии дренажа так как всасывание осуществляется непосредственно из корпуса насоса. При этом в корпусе насоса абсолютное давления ниже атмосферного. По этой причине в данной конструкции повышенные требования предъявляются к уплотнению вала, при выходе из строя которого насос подсасывает воздух и подает гидросистему смесь воздуха и рабочей жидкости. Такой «воздушный коктейль» приводит к вибрациям в гидросистеме и выходу из строя ее элементов, включая насос.

Рабочий объем рассчитывается по той-же зависимости что и для описанных выше конструкций аксиально-поршневых насосов. Следует отметить что насос данной конструкции не имеет исполнения с регулируемым рабочим объемом.

Фотография насоса сконструктивным вырезом показана на рис. 13.

18.jpg

Достоинства и недостатки насосов аксиально-поршневого типа:

Достоинства

  • простота конструкции.
  • Работа на давлениях до 70МПа.
  • Высокий КПД.
  • Частоты вращения до 4000 об/мин
  • Высокая удельная мощность.

Недостатки

  • Высокая пульсация давления
  • Высокая стоимость по сравнению с другими типами гидронасосов.

2. Шестеренные насосы

Шестеренные насосы относятся к типу роторныхгидромашин.  Рабочими элементами (вытеснителями) являются две вращающиеся шестерни. Различают два основных типа таких насосов:

  • Насосы внешнего зацепления
  • Насосы внутреннего зацепления.

Частным случаем шестеренных насосов с внутренним зацеплением являются героторные насосы.

Шестеренные насосы широко распространены в гидросистемах с невысокими (до 20 МПа) давлениями.  Они широко применяются в сельскохозяйственной, дорожной технике, мобильной гидравлике, системах смазки. Используются для обеспечения гидравлической энергией гидроприводов вспомогательных механизмов в сложных гидросистемах. Столь широкое распространение шестеренные насосы получили за простоту конструкции, компактность и малый вес. Платой за простоту конструкции стало довольно низкое значение КПД (не более 0,85), низкое рабочее давление, и небольшой ресурс (особенно на давлениях ≈20МПа). Шестеренные насосы могут работать на частотах вращения до 5000об/мин.

Существуют образцы шестеренных насосов на давления до 30МПа однако ресурс таких насосов на порядок ниже.

2.1Шестеренные насосы внешнего зацепления

Основными элементами шестеренных насосов внешнего зацепления являются шестерни. При вращении шестерен жидкость, заключенная во впадинах зубьев переносится из линии всасывания в линию нагнетания (рис.14).   Поверхности зубьев А1 и А2 вытесняют при вращении шестерен больше жидкости чем может поместиться в пространстве освобождаемом  зацепляющимися зубьями B1 и B2. Разность объемов, высвобождаемых двумя парами зубьев вытесняется в линию нагнетания. В месте зацепления шестерен при работе насоса образуются области «запертого» объема, что вызывает пульсации давления в линии нагнетания.

Рабочий объем шестеренного насоса можно определить из зависимости:

19.jpg

Где     m – модуль зубьев

z – число зубьев

b – ширина зуба

h – высота зуба

Шестерни насосов внешнего зацепления в большинстве конструкций имеют прямой зуб, однако встречаются конструкции таких насосов с косым и шевронным зубом. Преимущество применения косого зуба состоит в меньшем уровне пульсаций за счет того что в месте зацепления «запертые» объемы не образуются. Недостатком конструкций с косым зубом является возникающая осевая сила, для восприятия которой нужно включать в конструкцию упорные подшипники. Этот недостаток отсутствует в насосах с шевронным зубом, где осевая сила компенсируется формой зуба. У насосов с шевронным зубом также малый уровень пульсаций.

20.jpg

Рис. 14

Конструктивный разрез шестеренного насоса с внешним зацеплением показан на рис. 15.

21.jpg

Рис. 15

Достоинства и недостатки шестеренных насосов внешнего зацепления:

Достоинства

  • простота конструкции.
  • Частоты вращения до 5000 об/мин
  • Низкая стоимость

Недостатки

  • Высокая пульсация давления
  • Низкий КПД
  • Сравнительно низкие давления

2.2   Шестеренные насосы внутреннего зацепления

Отличительной особенностью шестеренных насосов внутреннего зацепления является меньший уровень пульсаций и как следствие малый уровень шума. В связи с этим они находят широкое в стационарных машинах и механизмах, а так-же на мобильной технике работающей в закрытых помещениях.

Принцип работы шестеренного насоса с внутренним зацеплением  состоит, как и у насосов внешнего зацепления, в переносе жидкости во впадинах шестерен от линии всасывания в линию нагнетания. В зоне всасывания при вращении шестерен объем камеры, образованной зубьями шестерен и серпообразным разделителем, увеличивается(см. рис. 16). При этом происходит наполнение рабочей камеры жидкостью из линии всасывания. В зоне нагнетания происходит процесс вытеснения рабочей жидкости в линию нагнетания, т.к. объем камеры в этой зоне при вращении шестерен уменьшается.

22.jpg

Рабочий объем шестеренного насоса с внутренним можно определить из зависимости:

23.jpg

Где     m – модуль зубьев

z – число зубьев внутренней шестерни

b – ширина зуба

h – высота зуба

Конструктивный разрез шестеренного насоса с внутренним зацеплением показан на рис. 17.

24.jpg

Рис.17

Достоинства и недостатки шестеренных насосов внутреннего зацепления:

Достоинства

  • простота конструкции.
  • Частоты вращения до 4000 об/мин
  • Низкий уровень шума
  • Низкая стоимость

Недостатки

  • Низкий КПД
  • Сравнительно низкие давления

2.3 Героторные насосы.

Героторные насосы это разновидность шестеренных насосов с внутренним зацеплением. Отличие от классической конструкции шестеренного насоса с внутренним зацеплением состоит в отсутствии серпообразного разделителя. Разделение полостей всасывания и нагнетания реализовано за счет применения специального профиля. Его форма такова что в зоне где должен находиться серпообразный разделитель обеспечен постоянный контакт шестерен. (рис.18). Принцип работы насоса данной конструкции точно такой же как и шестеренного насоса с внутренним зацеплением.Героторные насосы обычно используют при невысоких давлениях (до 15МПа) и подачах до 120 л/мин. При этом частоты вращения составляют не более 1500 об/мин.

Изображение героторногопоказано насосана рис. 19.

25.jpg

Рис.18

Рабочий объем героторного насоса можно определить из выражения:

26.jpg

Где     Аmin,Аmin – минимальная и максимальная площадь межзубьевой камеры

z – число зубьев внутренней шестерни

b – ширина зуба

27.jpg

Рис.19

Достоинства и недостатки героторных насосов:

Достоинства

  • Простота конструкции
  • Низкий уровень шума

Недостатки

  • Невысокий КПД
  • Высокая по сравнению с шестеренными насосами стоимость

2.4 Роторно-винтовые насосы.

Еще одной разновидностью шестеренного насоса можно считать винтовые насосы. Их рабочие элементы можно представить как косозубые шестерни с количеством зубьев равному числу заходов винтовой нарезки. Главным преимуществом этих насосов является равномерность подачи и как следствие низкий уровень шума. Достоинством насоса также является его способность перекачивать жидкости с твердыми включениями. Давление развиваемое насосом может составлять до 20МПа. Частоты вращения до 1500 об/мин.

Ввиду сложности изготовления данного типа насосов, они не получили широкого распространения и применяются лишь в специфических гидросистемах. Существуют двух (рис. 20) и трехвинтовые (рис. 21) конструкции насосов.

28.jpg

29.jpg

Достоинства и недостаткироторно-винтовых насосов:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций

Недостатки

  • Невысокий КПД
  • Высокая стоимость

3.  Пластинчатые насосы.

Пластинчатые гидронасосы это гидромашины в которых роль вытеснителя рабочей жидкости выполняют радиально расположенные пластины, которые совершают возвратно-поступательные движения при вращении ротора. В российской литературе пластины часто называют – шиберами, а насосы – шиберными.

Различают пластинчатые гидронасосы однократного действия и двойного действия. У насосов однократного действия за один оборот вала гидромашины процесс всасывания и нагнетания осуществляется один раз, в машинах двойного действия — два раза.

Пластинчатые насосы имеют низкий уровень шума и хорошую равномерность подачи. Также эти насосы имеют сравнительно большие рабочие объемы при небольших габаритах. Пластинчатые гидронасосы могут работать на давлениях до 21МПа при частотах вращения до 1500 об/мин.

3.1 Насос однократного действия

Принцип работы насоса однократного действия состоит в следующем. При сообщении вращающего момента валу насоса ротор насоса приходит во вращение (см. рис. 22). Под действием центробежной силы пластины прижимаются к корпусу статора, в результате чего образуется две полости, герметично отделённых друг от друга. При прохождении пластин через область всасывания, объем рабочих камер между ними увеличивается и происходит всасывание рабочей жидкости.При прохождении пластин через область нагнетания, объем рабочих камер между ними уменьшается и происходит вытеснение рабочей жидкости в линию нагнетания. Для обеспечения прижима пластин в зоне нагнетания в полость под ними подводится давление из линии нагнетания. В некоторых случаях дополнительный прижим пластин организуется за счет установки пружин под пластины.

Рабочий объем пластинчатого насоса однократного действия рассчитывается как:

30.jpg

Где     e – эксцентриситет

b – ширина пластины

Насосы однократного действия конструктивно могут иметь исполнения с регулируемым рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета e.

31.jpg

Рис. 22

Достоинства и недостаткипластинчатых насосов однократного действия:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций
  • Возможность регулировки рабочего объема
  • Низкая по сравнению с роторно-поршневыми насосами стоимость.
  • Менее требователен к чистоте рабочей жидкости.

Недостатки

  • Большие нагрузки на подшипники ротора.
  • Сложность уплотнения торцов пластин
  • Низкая ремонтопригодность
  • Сравнительно невысокие давления (до 7МПа)

3.2 Насос двойного действия

Принцип действия насоса двойного действия полностью аналогичен принципу работы насоса однократного действия (рис. 23). Отличием является наличие двух зон всасывания и двух зон нагнетания. Для обеспечения прижима пластин в зоне нагнетания, также как и насосов однократного действия, подводится давление нагнетания.

32.jpg

Рис. 23

Рабочий объем пластинчатого насоса двойного действия рассчитывается как:

33.jpg

Где     b – ширина пластины

Изображение внутреннего устройства пластинчатого насоса двойного действия показано на рис. 24.

34.jpg

Рис. 24

Достоинства и недостаткипластинчатых насосов двойного действия:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций
  • Возможность регулировки рабочего объема
  • Уравновешенность радиальных нагрузок в роторе.
  • Низкая по сравнению с роторно-поршневыми насосами стоимость.
  • Менее требователен к чистоте рабочей жидкости.
  • Большие по сравнению пластинчатыми насосами однократного действия давления (до 21МПа)

Недостатки

  • Низкая ремонтопригодность
  • Сложность уплотнения торцов пластин

4. Рекомендации по выбору насоса для гидросистемы.

Выбор типа и насоса нужно осуществлять исходя из условий работы гидросистемы, ее назначения и требований к параметрам потребного потока рабочей жидкости.

Основными параметрами при выборе типа насоса являются:

  • Уровень действующих давлений рабочей жидкости;
  • Класс чистоты рабочей жидкости;
  • Диапазон вязкостей рабочей жидкости;
  • Экономическое обоснование применения.

При выборе насоса для гидросистемы следует учитывать большое количество определяющих факторов. Основными критериями с которых необходимо начать выбор насоса являются необходимая подача Qи давлениеp. Также в начале процедуры подбора необходимо четкое представление о типе приводного двигателя. В зависимости от предназначения и базирования механизма приводимого в действие гидросистемой приводной двигатель может быть электрическим или двигателем внутреннего сгорания. При выборе мощности приводного двигателя следует определить необходимую для гидросистемы гидравлическую мощность, которую можно приблизительно определить по зависимости (1).

А еще интересно:  Не включается стартер нивы шевроле

35.jpg

где     Q – подача насоса [л/мин]

p – давление в гидросистеме [МПа]

ɳ — КПД насоса (шестеренного и пластинчатого ɳ=0,85, для роторно-поршневого ɳ=0,9)

После определения мощностивыбирается тип гидронасоса исходя из характеристик свойственных для каждого из типов насосов и рабочего давления. Необходимый рабочий объем гидронасоса определяется как:

36.jpg

где     Q – необходимая подача насоса [л/мин]

n – частота вращения двигателя [об/мин]

Определив необходимый рабочий объем насоса,выбираем по каталогу насос выбранного типа с наиболее близким значением рабочего объема. После чего взяв из каталога реальные значения q0и ɳ, рассчитываем реальное значение подачи насосаQ:

37.jpg

и проверяем насос на совместимость с выбранным двигателем по мощности (см. выражение (1)).

При необходимости наличия регулируемой подачи насоса, помимо установки регулируемого насоса, можно применить насос постоянного рабочего объема при этом подачу регулировать оборотами приводного двигателя. Данный способ регулирования может быть осуществлен в ограниченных характеристиками двигателя пределах.

Для ступенчатой регулировки скорости гидродвигателя в гидросистеме можно применять два насоса илимногосекционные насосы, фактически представляющие собой несколько насосовконструктивно выполненных одним блоком. Для регулировки скорости в этом случае необходимо подключать или отключать секции насоса изменяя тем самым суммарную подачу насоса. Способы коммутации секций будут описаны в статьях 7 и 8.

5. Причины отказа насосов.

При эксплуатации насоса следует обращать внимание на условия его работы. Наиболее часто неисправность насоса бывает вызвана:

  • Попаданием посторонних частиц (грязи)
  • Масляным голоданием
  • Работой на водно-масляной эмульсии
  • Работой на воздушно-масляной смеси
  • Работой с перегрузкой по давлению
  • Превышением допустимых оборотов
  • Превышение давления в корпусе
  • Перегревом рабочей жидкости

6. Заключение.

Данная статья написана в помощь специалистам осуществляющим ремонт, обслуживание и эксплуатацию гидросистем станочного оборудования и мобильных машин. Ознакомившись с вышенаписанным материалом, читатель получает базовые сведения о самых распространённых типах гидравлических насосов, их преимуществах и недостатках. Также в материале имеется простейший алгоритм определения мощности насоса и подбора приводного двигателя.

Следует отметить что практически все описанные конструктивные типы насосов могут использоваться в качестве гидромоторов, но об этом в следующей статье…

Все типы насосов описанные в данной статье можно приобрести в компании RGC гидроагрегаты.Возможна поставка гидрооборудования и запасных частей под заказ. Также в нашей компании можно получить консультации по гидрооборудованию.

Внимание! Данная статья авторская. При копировании ее с сайта обязательно указывать источник!

С Уважением,

Начальник конструкторского отдела

Лебедев М.К.

Тел.: 8(800) 550-42-20 

Гидрораспределитель

Для управления процессом подъема/опускания кузова, используется гидрораспределитель. Для различных систем, а так же способов монтажа, существуют различные виды этого устройства.

Двухконтурная гидрофикация

Данный тип компоновки имеет два рукава РВД, один высокого, другой низкого давления и применим для тягачей и шасси, работающих с прицепной техникой, силовая установка которых требует циркуляции гидравлического масла. К видам такой техники относятся щеповозы, цистерны, автовозы, тралы и др.

Каково будущее гидравлики?

Мы можем быть уверены, что гидравлика будет значительной частью оборудования в следующем столетии или даже дольше, потому что трудно предсказать технологии, которые появятся по мере нашего экспоненциального продвижения вперед. Например, абсолютно никто не предсказывал появление Интернета в 1950 году, и сейчас мы все еще ждем летающих автомобилей и колонизации Марса, которые могут быть ближе, чем мы думаем, если мы попросим Илона Маска предсказать эти факты.

Вы случайно не наткнулись на термин “электрогидравлика“? Что, если вы объедините компьютеры с гидравликой? В будущем компьютеры будут часто устанавливаться на гидравлическое оборудование. Это обеспечит точное распределенное управление. Подумайте о том, что это будет означать для двигателей, цилиндров, клапанов и насосов. Электрогидравлика прокладывает себе путь к современной гидравлике.

Гидравлика обладает огромной концентрацией мощности. Мы называем это плотностью мощности. Соответствие гидравлики для мускулов и компьютеров для мозга делает гидравлику умнее и эффективнее. Электроника не может с этим сравниться, по крайней мере пока. Что может обеспечить электроника, так это гораздо лучшую координацию и контроль.

В ближайшее время приготовьтесь к работе с гидравлическим оборудованием со все более высоким IQ, оснащенным искусственным интеллектом. Учитывая постоянно развивающееся и стремительное развитие технологий, гидравлическое оборудование становится все более мощным.

К сожалению, навыки оператора развиваются не с той же скоростью, и именно поэтому срочно требуется более удобное оборудование. Для обеспечения безопасности оператора и долгосрочной жизнеспособности оборудования конструкция гидравлического оборудования должна быть более удобной для пользователя.

Развитие гидравлических технологий с 19 века было феноменальным. Основными преимуществами гидравлических систем являются легкая и мощная передача энергии, гибкие и индивидуальные свойства, а также возможность многократной передачи силы в различных отраслях промышленности.

Гидравлические системы успешно используются в эксплуатации и управлении станками, сельскохозяйственным, строительным и горнодобывающим оборудованием, а также в автомобильной и авиационной промышленности. Без сомнения, мы можем сказать, что жидкая энергия может успешно конкурировать с механическими и электрическими системами. Гидравлические силовые системы могут обеспечивать усилие от нескольких килограммов до тысяч тонн.

Поскольку развитие технологий быстро развивается в современном мире, а разнообразие гидроэнергетических систем становится все более специфичным и адаптированным для многих отраслей промышленности, по-прежнему существует множество возможностей для дальнейшего развития использования гидравлики.

Гидроэнергетические системы стали одним из основных игроков в технологиях передачи гидравлической энергии, широко используемых в промышленности, горнодобывающей промышленности, лесном хозяйстве, авиационной промышленности и даже в космической технике.

Поскольку космическая гонка продолжает развиваться, гидравлические системы также играют там важную роль.

Гидравлическая промышленность становится все более и более активной. Потребности клиентов меняются и превращаются в более сложные и конкретные запросы. Мы любим новые задачи и готовы решать их за вас. Мы в Seal Market позаботимся о том, чтобы предоставлять услуги, в которых вы нуждаетесь, также в будущем.

Комбинированная

Данный тип компоновки включает в себя оба выше перечисленных типа, по сути является универсальной системой. Применяется на тягач и шасси работающих с различными типами прицепной техники. Особенностью такого вида, является возможность переключения на требуемый режим работы в процессе эксплуатации, и не требует модернизации при работе с разными типами прицепной техники.

Конструкция гидравлики разных видов

В промышленности используют машины и механизмы со сложным устройством, но, как правило, гидравлика в них работает по общей принципиальной схеме. В систему включены:

  • рабочий гидроцилиндр, преобразовывающий гидравлическую энергию в механическое движение (или, в более мощных промышленных системах, гидродвигатель);
  • гидронасос;
  • бак для рабочей жидкости, в котором предусмотрена горловина, сапун и вентилятор;
  • клапаны — обратный, предохранительный и распределительный (направляющий жидкость к цилиндру или в резервуар);
  • фильтры тонкой очистки (по одному на подающей и обратной линии) и грубой очистки — для удаления примесей механического характера;
  • система, управляющая всеми элементами;
  • контур (емкости под давлением, трубопроводная обвязка и другие компоненты), уплотнители и прокладки.
Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Классическая схема раздельноагрегатной гидросистемы

В зависимости от вида гидросистемы, ее конструкция может отличаться — это влияет на сферу применения устройства, его рабочие параметры.

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.
Стандартный рабочий гидроцилиндр тормоза для комбайна «Нива СК-5»

Коробка отбора мощности (ком)

При помощи данного устройства крутящий момент от трансмиссии, передается к гидравлическому насосу. В зависимости от марки автомобиля существуют различные варианты исполнения данного устройства. Включается КОМ принудительно, из кабины водителя.

Одноконтурная гидрофикация

Данный тип компоновки имеет один рукав высокого давления (РВД), подключаемый к потребителю и работает по реверсивной схеме (подача масла и слив происходит по одному рукаву), применим для тягачей и шасси, работающих с самосвальными полуприцепами и прицепами, которые выполняют одностороннюю разгрузку таких как WIELTON (ВЕЛЬТОН)

Плюсы и минусы гидравлических систем

Гидравлические системы-это цепи передачи энергии, которые преобразуют механическую энергию в давление и снова возвращают ее в механическое движение. Как правило, начальная механическая энергия представляет собой вращательное движение, создаваемое двигателем внутреннего сгорания или электродвигателем.

  • Гидравлические системы являются самосмазывающимися
  • Хорошее соотношение мощности и веса
  • Относительно небольшие компоненты
  • Простая и гибкая передача энергии с помощью гидравлических труб
  • Возможность отключения привода от выработки гидравлической энергии за счет легкой передачи гидравлической энергии
  • Гидравлическими системами можно управлять как вручную, так и с помощью современной электроники.

Слабыми сторонами гидравлической системы являются:

  • Чистота трансмиссионных жидкостей
  • Характеристики жидкостей, зависящие от температуры
  • Передача электроэнергии на большие расстояния приводит к потерям мощности в системе
  • Компоненты и гидравлические жидкости требуют регулярного технического обслуживания

Управление гидроприводом

В кабину тягача устанавливается джойстик, для управления всеми функциями гидросистемы. При комбинированной схеме подключения, может быть установлена дополнительная кнопка выбора задействуемой системы.

Услуги и цены

* Цены указаны с НДС. ** Версия для печати…

Стендовые испытания и настройка после ремонта гидронасоса Rexroth A4VSO 180 HSE

Шланги-рукава высокого давления (рвд), фитинги, соединения

Фитингом называют соединительную часть, которая устанавливается в местах поворотов, разветвлений шлангов и трубок, а также соединений разных диаметров, обеспечивающих возможность частой сборки/разборки труб. Для оперативного подключения всех систем предназначены специальные быстроразъёмные соединения.

РВД Binotto соответствуют высокими международным стандартам ( EN 853 2SN, EN 856 4SP И EN 856 4SH), РВД Binotto ТР2 оснащены специальным армированием: две оплётки из высокопрочной стальной проволоки или четыре из высокопрочной стальной проволоки. Рукав изготовлен из синтетической резины, устойчивой к гидравлическим жидкостям с покрытием, устойчивым к трению и озону.

Подведем итоги

Наша компания имеет многолетний опыт подбора, монтажа и подключения гидравлического оборудования к прицепной технике различного назначения. Для обеспечения высокого качества и продолжительной, безотказной работы мы применяем самое современные инструменты и оборудование от ведущих мировых производителей.

1 ЗвездаНельзя так писать о НивеНа троечкуНива хороша!Нива лучше всех! (Пока оценок нет)
Загрузка...
Закладка Постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован.