ПНЕВМОХОД С ПРИСТАВКОЙ «АЭРО» | МОДЕЛИСТ-КОНСТРУКТОР

Пневматическая подвеска на грузовиках, с чего всё начиналось: журнал «автотрак»

Первые упоминания о пневматических подвесках в патентных архивах США относятся к 1880 г. В 1888 г. Данлоп не только изготовил первую пневматическую шину, но и предложил первую пневматическую подвеску для автомобиля. Однако лишь в 1909 г. появился автомобиль Коуей с пневматической подвеской, да и то только на выставке.

На рубеже 20-30-х годов прошлого века французские, итальянские и чешские автомобильные компании выпустили ряд моделей с пневматической подвеской, как правило, телескопического типа — то есть без применения резинокордовой оболочки. Пневмопружины телескопического типа, несмотря на свою дороговизну, отличались плохой герметичностью, а применение пневморезиновых элементов сдерживалось их небольшой долговечностью вследствие несовершенства технологии изготовления.

За океаном североамериканская компания Firestone Tire & Rubber начала свои эксперименты с пневматическими двухгофровыми пневмобаллонами в начале 30-х годов. Через несколько лет экспериментальные работы дошли до полевых испытаний. В 1935-1939 гг. несколько опытных автомобилей Бьюик и Плимут были оснащены пневматическими рессорами.

Резинокордовый пневмобаллон, по существу, представляет собой бескамерную шину. Камерная и бескамерная шины должны существенно отличаться между собой. Дело в том, что воздух проходит через резину. Конечно, автомобильные камеры стараются делать из более воздухонепроницаемой резины, но воздух все равно проходит. В камерной покрышке воздух, прошедший через резину камеры, просто выходит наружу. Шина постепенно спускает, и только. В бескамерной шине воздух может накапливаться в стенках, приводя к расслоению резины и корда. Поэтому баллон пневмоподвески был для резинотехнической промышленности 30-х годов большим достижением.

За период до 1938 г. в США было выпущено около 50 различных типов пневматических подвесок. Однако резинокордные элементы с хлопчатобумажным кордом не могли обеспечить высокий ресурс пневмоподвеске.

В 1938 г. компании Firestone удалось заинтересовать крупнейшего в США производителя автобусов — концерн Дженерал Моторс — в установке пневматической подвески на разрабатываемые модели. Мировая война задержала внедрение нового типа подвески. Первый автобус с пневматической подвеской был протестирован только в 1944 г. В ходе этих испытаний были задокументированы неоспоримые преимущества пневмоподвески — в плавности хода прежде всего.

Потребовалось еще несколько лет интенсивных исследований и испытаний, прежде чем в 1953 г. на конвейер были поставлены первые автобусы GM с пневматическими пружинами. В условиях реальной эксплуатации пневмоподвеска продемонстрировала высокие эксплуатационные качества и надежность. Даже после пробега в 1 млн миль пневматические элементы не требовали замены. Вслед за автобусами пневматические подвески стали появляться на грузовиках. Средняя наработка на отказ пневмобалона составляла 1 млн км, в то время как стальные рессоры выходили из строя примерно после 200 тыс. км. Секрет успеха резинокордовых оболочек заключался в применении нейлонового корда — синтетического полиамидного волокна, изобретенного американской компанией DuPont.

В Европе в 1955 г. немецкие фирмы Континенталь и Метцлер на выставке в Германии показали первые образцы пневмоподвесок. В конце 1957 г. в Германии был запущен в производство автобус MAN 760 UO1 с пневматическими пружинами. Немцы знали толк в полиамидных волокнах. Еще в 1943 г. в Германии было создано промышленное производство поликапролактама, из которого делали корд для авиационных шин, парашютный шелк, буксировочные тросы для планеров. Наличия одного только синтетического корда для создания высокопрочной оболочки пневмобаллона — мало. Нужна еще технология, увеличивающая сцепление каучука с кордом.

В США в 1957 г. были представлены несколько моделей тяжелых грузовиков, имевших в стандартном исполнении пневматическую подвеску передней и задних осей. В декабре 1958 г. на выставке в Чикаго GMC показала тягач модели DLR 8000 с кабиной над двигателем, передняя подвеска которого была не только пневматической, но и независимой. До этого тяжелые грузовики с независимой подвеской производила (и производит) в Европе лишь компания TATRA.

В Советском Союзе работы по пневматическим подвескам велись лишь после внедрения таких систем на Западе. Круглые двойные пневматические баллоны размером 250×200 отечественного производства (НИИШП) установили в заднюю ось автобуса ЗИЛ-158. Благодаря применению пневматики удалось получить плавность хода, соизмеримую с увеличением листовой рессоры более чем в 1,5 раза. Правда, такая замена привела бы к тому, что кузов автобуса без нагрузки поднялся бы на 20 см. При стендовых испытаниях пневморессора НИИШП, созданная совместно с НАМИ, выдержала 6 млн циклов без выхода из строя. Для каркаса пневмобаллонов использовали капроновый корд 14К, имеющий прочность 14-15 кг.

Пневматические подвески конструкции НАМИ устанавливались на автомобили ЗИЛ-164, представляющие собой ходовую лабораторию. Пневмобаллоны устанавливались также в задней подвеске автобуса ЛАЗ-695, получившего обозначение ЛАЗ-695Э.

Испытания, проведенные совместно с автозаводом им. Лихачева, показали, что экспериментальный ЗИЛ-164 может быстрее передвигаться по плохой дороге, чем ГАЗ-51 и новый грузовик ЗИЛ-130. Автобус ЛАЗ-695Э прошел по булыжной дороге плохого качества 25 тыс. км.

В первых пневматических подвесках применялись круглые пневмобаллоны, состоящие из одного, двух, или нескольких расположенных друг над другом элементов торообразной формы. Использовались удлиненные пневмобаллоны с закругленными торцами, также состоящие из двух-трех «этажей», и диафрагменные пневматические упругие элементы в различных вариантах. Пневмобаллоны с резинокордовыми оболочками круглой формы используются по сегодняшний день. Они обладают большой долговечностью и грузоподъемностью, компактны и удобны для массового производства.

Однако пневматические рессоры баллонного типа имеют ряд недостатков. Динамическая и статическая жесткости круглого пневмобаллона значительно отличаются. Пневмобаллоны круглой формы не обеспечивают собственные колебания с частотой ниже 1,3-1,5 Гц даже при использовании значительных дополнительных объемов воздуха.

Дело в том, что грузоподъемность пневматической рессоры определяется произведением давления на эффективную площадь. У круглого баллона эффективная площадь значительно зависит от радиуса закругления оболочки — она растет с увеличением деформации. Также с увеличением деформации растет давление в баллоне. Увеличение сразу двух множителей при сжатии не позволяет получить малые частоты колебаний и поэтому приходится применять дополнительный объем.

Для дополнительного объема воздуха первоначально использовали пространство внутри полой оси. В силу технологической сложности и недостаточной надежности от этого решения вскоре отказались. Совсем недавно к забытому решению вернулась компания BPW, предложившая оси Eco Vision.

Удлиненные пневмобаллоны уже не используются. Их преимуществом была небольшая ширина, которая позволяла устанавливать пневматическую подвеску вместо обычных многолистовых рессор. Баллоны длиной 1,7 м позволяли по технологиям того времени обеспечить нагрузку до 10 т. Но при равных площадях круглого и удлиненного баллонов грузоподъемность круглого будет в 1,5 раза выше. Удлиненные баллоны сложны в производстве, им тоже требуются дополнительные объемы воздуха.

В настоящее время широкое распространение получили диафрагменные элементы трубчатого типа — «рукава». В таких пневматических рессорах изменение объема, а значит, и пропорциональное увеличение давления, изменяется аналогично тому, как это происходит в 2-3-секционных круглых баллонах, а изменение эффективной площади происходит по-другому — увеличивается только в крайних положениях. Поэтому пневматические подвески этого типа имеют малые собственные частоты и не нуждаются в применении больших дополнительных объемов. Однако пневморессоры диафрагменого типа предъявляют повышенные требования к резино-кордовой оболочке, так как она подвергается большему изгибу. Конструктивные особенности таких рессор не позволяют снизить минимальное давление меньше 3 бар, так как при низком давлении оболочка не будет нормально облегать основание.

Первые отечественные опытные диафрагменные упругие элементы были созданы на кафедре Колесные машины МВТУ им. Баумана и в ОКБ Ленинградского шинного завода. Они получили обозначение Д 330-90 и были установлены в задней подвеске автомобиля ГАЗ-63. Пневморессора обеспечивала ход 200-250 мм и полную статическую нагрузку в 1,5-2 т. Такая грузоподъемность была избыточной для ГАЗ-63. При минимальной статической нагрузке давление в упругом элементе было меньше 2 бар.

Велись в СССР опытные работы по независимым подвескам тяжелых грузовиков. Так, в 1957 г. начались работы по проектированию независимой передней торсионной подвески для 10-тонного грузовика ЯАЗ-210Е. Работа велась для повышения плавности хода и проходимости тяжелых автомобилей ЯАЗ. Грузовик прошел испытания пробегом 15 тыс. км. Был выявлен ряд конструкционных недостатков подвески и установлена необходимость проектирования специального рулевого управления. Также требовалось принять меры по предотвращению скручивания лонжеронов рамы.

А еще интересно:  Коробка передач нива шевроле схема видео

В 1960 г. пневмоподвеска была установлена на автобус ЛАЗ-698 «Карпаты», созданный в единственном экземпляре Львовским автобусным заводом совместно с НАМИ. Автобус к тому же имел переднюю независимую подвеску.

В том же 1960 г. Ликинским автобусным заводом был создан экспериментальный образец ЛиАЗ-Э676 (НАМИ-ЛиАЗ-158М), также спроектированным при участии НАМИ. Автобус представлял собой модернизированный ЗИЛ-158, отличавшийся сдвоенными дверьми спереди и сзади, накопительной площадкой сзади. Кузов был сделан несущим с замкнутыми лонжеронами. Изменения в конструкции кузова предусматривали установку пневматической подвески. В последующие 3 года завод подготовит последовательно 3 опытных образца городского автобуса большой вместимости ЛиАЗ-Э677. Запуск автобуса в производство займет еще несколько лет.

Интерес зарубежных производителей грузовиков к пневматическим подвескам подогревался, в первую очередь, улучшением технико-эксплуатационных характеристик грузовика. Поскольку применение регулируемой пневматической подвески позволяло уменьшить высоту шасси за счет уменьшения статического прогиба рессор, то это при ограничении габарита по высоте позволяло увеличить объем полуприцепа примерно на 3 м³. Также применение пневморессор позволяет увеличить грузоподъемность где-то на 0,5 т. Такие преимущества оправдывали увеличение начальной стоимости грузовика из-за установки пневмоподвески, особенно дорогой в начальный период освоения таких систем.

Недостатки вездеходов на «пневматиках»

А еще интересно:  Сервисная кнопка Starline: где находится Валет и как выглядит

Самодельные вездеходы — пневмоход.ру

Из вездеходов, перемещающихся по воде и суше, одно время получили распространение машины, названные вначале амфикары. Это небольшие, сравнительно небыстрые вездеходы, представляющие собой как бы ванну на колесах ( 122). Число колес такого автомобиля колеблется от четырех до шести. Колеса каждого борта, соединенные, как правило, цепной передачей друг с другом, вращаются с одинаковой угловой скоростью. Крутящий момент к каждому борту передается через фрикционные муфты поворота и вариаторы. По воде автомобиль перемещается за счет вращения колес. Для увеличения скорости движения по воде иногда устанавливается подвесной лодочный мотор или используется водометный движитель.

Принципиальная схема вездеходной машины
Рис. 122. Принципиальная схема вездеходной машины (амфи-кара):
/ — кузов; 2 — рычаги управления; 3 — сиденье; 4 — коробка передач; 5 — двигатель; 6 — дисковые тормоза; 7 — привод на ведущие оси; 8 — колесо

Поворот осуществляется торможением колес правого или левого борта. Управление осуществляется с помощью рычагов. Такое управление настолько эффективно, что не требует заднего хода, так как радиус разворота не превышает двух метров.

В качестве примера такой конструкции вездехода рассмотрим машину, созданную в лаборатории малогабаритной техники КЮТ Новосибирского академгородка ( 123). Кузов автомобиля каркасного типа, имеет сварную раму из труб 015 мм, которая обшита стальными листами толщиной 1 мм. В качестве двигателя взят мотор от мотоцикла Иж-56, оснащенный генератором и стартером. Крутящий момент от двигателя через дифференциал, взятый от мотоколяски, передается на средние колеса правого и левого бортов. Каждое из этих колес соединено с остальными колесами своего борта цепной передачей.

Вездеход Новосибирского академгородка
Рис. 123. Вездеход, построенный в КЮТ Новосибирского академгородка

На средних колесах вездехода установлены тормозные колодки. С помощью этих тормозов осуществляется поворот. Тормозной механизм колес одного из бортов приводится в действие рычагом управления, и они затормаживаются. Так как в это время двигатель продолжает вращать колеса другого борта, вездеход поворачивается. В автомобиле отсутствует педаль тормоза и торможение осуществляется после отключения сцепления притормаживанием колес сразу обоих бортов. Все колеса у машины ведущие. Двигатель с дифференциалом соединяется с помощью цепной передачи. Колеса взяты от мотоколяски, но для улучшения проходимости и смягчения толчков при движении давление в них должно быть в пределах 0,8 … 1 кгс/см2.

Хорошими вездеходами зарекомендовали себя вездеходы на шинами низкого давления. Примером такой конструкции может служить колесный вездеход, построенный жителем г. Череповца А. Громовым ( 124). Пневмоходу Громова практически нет преград. Он хорошо перемещается по болоту, песку, кочкам, лугу и среди деревьев.

Машина представляет собой конструкцию с ломающейся рамой и широкопрофильными шинами низкого давления. Рама при движении, постоянно изгибаясь, как бы отслеживает рельеф местности. Все «четыре колеса у машины ведущие и постоянно находятся в контакте с поверхностью. Кинематическая схема показана на 125.

Кинематическая схема трансмиссии пневмохода А Громова
Рис. 125. Кинематическая схема трансмиссии пневмохода А. Громова:
1 — полуось Перед:него моста; -выходной вал двигателя; 3-цепная передача; -передний кардан-колеса 5~соенительное звено; -задний карданный вал; 7-дифференциал; S-полуось заднего

Ходовая часть машины в виде рамы состоит из двух частей, соединенных посредине шарниром с вертикальной осью вращения. Передняя часть, на которой установлены двигатель, мост, топливный бак, сиденье водителя и органы управления, представляет собой жесткий сварной узел. Задняя часть рамы, на которой крепятся мост, тормоз и съемный кузов, подвижная, имеющая шарнир с горизонтальной осью вращения.

Двигатель от мотороллера ВП-150М для уменьшения места расположен поперек; это обеспечивает наиболее благоприятное охлаждение двигателя. Крепится он с помощью кронштейнов, размещенных на кожухе дифференциала под цилиндром двигателя, на правой балке моста под картером и на кожухе цепной передачи. Органы управления, педали сцепления и газа вынесены на балки переднего моста. Отработанные газы из цилиндра по гофрированному патрубку попадают в левую несущую трубу рамы и затем в выхлопную трубу под сиденьем.

А еще интересно:  Установка розетки на фаркоп 21214

Крутящий момент от двигателя цепной передачей передается к карданным валам и далее через конические шестерни и дифференциалы к полуосям мостов.

Колеса на машине просты по конструкции и состоят из алюминиевых ступиц, к торцам которых привинчиваются диски из того же материала. К дискам с помощью крючков и петель прикрепляются восемь брезентовых ремней, опоясывающих шину. Шина представляет собой две камеры размером 720X310 мм, вложенные одна в другую. Сверху камеры защищены брезентовой лентой, которая имеет складки, выполняющие роль грунто-зацепов.

Другим примером вездехода — амфибии может служить амфи-кар Н. Корчагина ( 126). К раме из труб 50X2 мм крепится герметичный дюралюминиевый корпус клепаной конструкции и все остальные агрегаты. Двигатель Иж-56 с принудительным охлаждением. Передача от мотора на колеса цепная через дифференциал или фриционы от грузового мотороллера ( 127). Все колеса ведущие. Поворот машины осуществляется бортовыми фрикционами, а также с помощью рулевого управления реечного типа, соединенного с двумя передними колесами.

Компоновочная схема шасси амфикара управления
Рис. 126. Компоновочная схема шасси амфикара управления):
/ — колесо; 2-ступица колеса; 3 — рычаги управления фрикционами; передача к средней полуоси Н. Корчагина; 4 — цепная передача на переднее колесо; 5 — двигатель; 6 — 7 — цепная передача на заднее колесо; 8 — фрикцион; 9 — цепная
Вид шасси амфикара Н. Корчагина
Рис. 127. Вид шасси амфикара Н. Корчагина (с рулевым управлением):
/ — рама; 2 — цепная передача на переднее колесо; 3 — рулевое устройство; 4 — силовой агрегат; ргчаг управления фрикционом; 6 — цепная передача, на среднее колесо; 7 — колесо

Колеса образованы ступицами от мотоколясок или грузового мотороллера с широкопрофильными шинами низкого давления, изготовленными самостоятельно. Диаметр шин 400 мм, ширина 200 мм, внутренний диаметр 130 мм. Материалом для изготовления шин служит сырая листовая резина толщиной 2 или 0,9 мм, прорезиненный корд и авиационный бензин. Технология обычная заводская с использованием самодельных пресс-форм, вытачиваемых из дюралюминия по форме колес. Вулканизатор сделан
из железной бочки с электронагревательными элементами мощностью 3,5 кВт. Давление при вулканизации около 600 кПа, температура^ 147 °С.

Встречаются  самодельные вездеходы и на гусеничном ходу. Примерами таких конструкций могут служить амфитрак «Обь», созданный А. Кремневым из Томской области, и вездеход, спроектированный членами КЮТ Новосибирского академгородка.

Корпус амфитрака «Обь» ( 128) изготовлен из листовой фанеры толщиной 12 мм. Элементы корпуса соединяются с помощью металлических уголков. Жесткости кузова при такой конструкции оказалось достаточно, чтобы обойтись без рамы. Таким образом, кузов имеет несущую конструкцию при массе всего 45 кг. Гусеницы натянуты на шесть опорных катков. В качестве последних взяты колеса от мотоцикла. Гусеницы самодельные и представляют собой алюминиевые литые траки, прикрепленные к втулочно-роликовым цепям ( 129). Гусеницы приводятся в движение с помощью двух пар звездочек. Катки насажены на три оси с подшипниками качения. Передняя ось укреплена на двух продольных полуэллиптических рессорах, набранных из трех листов. Задние оси катков подвешены на качающейся раме, изготовленной из двух стальных уголков ( 130).

Компоновочная схема амфитрака Обь
Рис. 128. Компоновочная схема амфитрака «Обь»
Конструкция трака и гусеницы амфитрака Обь
Рис. 129. Конструкция трака и гусеницы амфитрака «Обь»
Устройство каретки задних катков
Рис. 130. Устройство каретки задних катков амфитрака «Обь»:
/ — ползун; 2-пружина; 3- салазки; 4 — тяга; 5 — гайка натяжного устройства; 6 — опорная пластина кронштейна; 7, 13 — оси катков; 8 — хомут; 9 — болт с гайкой и шайбой; 10 — ограничительная втулка; — ось каретки; 12-качалка

Ведущие звездочки располагаются на оси главной передачи, которая состоит из редуктора, двух механизмов сцепления. Звездочка на входе редуктора с помощью втулочно-роликовой цепи соединяется со звездочкой двигателя, который взят от мотоцикла «Иж».

Органы управления состоят из двух рычагов бортовых фрикционов, педали муфты сцепления, педалей тормоза, газа и педали кикстартера. Амфитрак оборудован съемным брезентовым тентом.

Вездеход, сконструированный в КЮТ Новосибирского академгородка ( 131), рамной конструкции, изготовлен из листовой стали толщиной 0,5… 0,8 мм, которая приварена газовой сваркой к трубам каркаса ( 132) кузова. Двигатель М-62 «Урал», модернизированный, установлен в задней части кузова. Принудительное охлаждение осуществляется с помощью двух восьмилопастных вентиляторов.

Вездеход, сконструированный в КЮТ Новосибирского академгородка
Рис. 131. Вездеход, сконструированный в КЮТ Новосибирского академгородка:
/ — кронштейн полуоси; 2 -• опорный каток; 3 верхний поддерживающий каток; 4 — натяжной каток; -~ — корпус; 6 — ветровое стекло; 7 — рычаг тормоза; 8 •-• ручка переключения передач; 9 — • двигатель; 10 — кожух вентилятора; — дифференциал; 12 — гусеница
Рама-каркас вездехода
Рис. 132. Рама-каркас вездехода

Двигатель с дифференциалом от мотоколяски СЗА связан цепной передачей. Для увеличения тягового усилия на гусеницах используется промежуточный цепной редуктор с передаточным отношением 3. Вращение от редуктора на дифференциал также передается с помощью передачи. Таким образом, крутящий момент от двигателя передается на редуктор, а затем на вал дифференциала и через него на ведущие колеса. На полуосях крепятся по две звездочки с количеством зубьев 26 и шагом 37 мм. Звездочки приводят в движение гусеницы. Чтобы полуоси не деформировались, наружный конец их имеет дополнительную опору в виде подшипника в кронштейне, установленном на каркасе кузова.

Вездеход имеет четыре скорости вперед и столько же назад. Поворот осуществляется ленточным тормозом путем торможения одной из полуосей дифференциала. Помимо рычагов управления поворотом имеется две педали: газа и сцепления. Педаль тормоза отсутствует, так как торможение осуществляется при действии одновременно двумя рычагами.

Гусеницы резинометаллические ( 133) с двумя параллельно расположенными цепями от транспортеров сельскохозяйственных машин. Имеющиеся на цепи выступы обрабатываются по форме уголков размером 20X20X3, приваренных к ним, которые служат грунтозацепами. К ним заклепками крепится резиновая кордолента, взятая от транспортера, толщиной 7 мм. Для направления движения катков на ленте устанавливаются резиновые выступы из клинового ремня (профиль «Е» по ГОСТ 1284—57).

Схема устройства резинометаллической гусеницы вездехода
Рис. 133. Схема устройства резинометаллической гусеницы вездехода:
/—транспортерная лента; 2 — цепь; 3 -направляющий выступ ленты; 4»- грунтозацеп из уголка; 5, 6 — заклепки

На 134 приведена схема вездехода, созданного американцами Ханебриком и Левеном. Это удивительный автомобиль, который создан руками умельцев. Его длина 3660 мм, ширина 2030 мм, высота 1015 мм, максимальная скорость 160 км/ч.

Компоновочная схема для самодельных вездеходов
Рис. 134. Предлагаемая компоновочная схема для самодельных вездеходов (на примере вездехода, созданного Ханебриком и Левеном)

Своеобразную конструкцию вездеходной машины предложили конструкторы Казанского молодежного КБ. В конструкции этой машины объединены гусеницы и воздушная подушка ( 135). Гусеницы всегда находятся в зацеплении с грунтом, что обеспечивает устойчивое движение машины по курсу. Около 60… 80% массы приходится на воздушную подушку, которая создается вентилятором, расположенным в кормовой части машины. Сходство с аппаратом на воздушной подушке придает и эластичная юбка впереди и по бортам. Установленные заслонки позволяют перераспределять воздух так, чтобы приподнимать машину с нужной стороны.

Компоновочная схема вездеходной машины Казанского молодежного КБ
Рис. 135. Компоновочная схема вездеходной машины Казанского молодежного КБ

Крутящий момент от двигателя ( 136) через цепную передачу передается на два фрикционных вариатора, связанных с гусеницами. Кинематика вариатора обеспечивает передний и задний ход, развороты и бесступенчатое регулирование скорости движения. Герметичный корпус позволяет вездеходу преодолевать и водные преграды.

Кинематическая схема силовой передачи вездеходной машины
Рис. 136. Кинематическая схема силовой передачи вездеходной машины:
/—ведущий барабан гусеничных лент; 2 — ведущие фрикционные диски; 3 ….-двигатель; 4 -5 -подвижный фрикционный ведомый диск; 6 -фрикционный диск привода вентилятора

Оригинальную машину повышенной проходимости сконструировал Э. Мельников, житель деревни Янино Ленинградской области. Это своеобразный моноцикл, известный еще до развития самодеятельного автостроения. Внутри полутораметрового колеса  по внешнему ободу на подшипниках катится внутренний обод. Движение внутреннего обода осуществляется с помощью двигателя, приводящего во вращение зубчатое колесо, находящееся в зацеплении с зубьями, нарезанными на внутренней поверхности наружного обода. Двигатель небольшой мощности, так как преодолению сопротивления при качении способствует и масса водителя за счет перемещения центра масс последнего. Большой диаметр колеса позволяет моноциклу легко преодолевать ямы и буераки .

Некоторые любители создают автомобили, способные передвигаться как по дорогам, так и по воде. Иногда за основу берутся моторные лодки, которые дополнительно оборудуются колесными движителями. Иногда же это обычный микроавтомобиль с водонепроницаемой нижней частью кузова, оборудованный водяным движителем.

Приведем в качестве примера автомобиль-амфибию Ю. Чумичева ( 137). Кузов этой амфибии двухместный полузакрытого типа выполняется аналогично корпусу катеров набором деревянных шпангоутов и стрингеров, обшитых фанерой толщиной 4… 6 мм. Автомобиль имеет трубчатую сварную раму, на которой крепятся передний и задний мосты. Трубы для рамы тонкостенные 0 50 мм. Передний мост от мотоколяски СЗА с небольшими изменениями, которые были необходимы, так как рулевая колонка и рычаги трапеции взяты от автомобиля «Мо-сквич-402». Кроме того, на колеса передней оси были установлены тормоза. Задний мост от мотоколяски СЗА с качающимися поперечными рычагами и элементами подвески мотоцикла «Ява».

Амфибия Ю. Чумичева
Рис. 137. Амфибия Ю. Чумичева:
/ — двигатель; 2 -руль; 3 — гребной винт; 4 — вал гребного винта; 5 — колесный редуктор; 6 — привод гребного винта; 7, 8- цепные передачи привода гребного винта и задних колес; 9- рама; 10 — рулевая колонка; /У -педаль привода; 12-передняя подвеска

Двигатель «Ява-350» установлен сзади на сварной трубчатой раме. Охлаждение осуществляется вентилятором, отсасывающим воздух от цилиндров и картера. Забор воздуха происходит через жалюзи крышек моторного отсека. Бензобак также расположен в моторном отсеке и топливо к карбюратору поступает самотеком. Крутящий момент от мотора к раздаточной коробке передается цепной передачей. Цепная передача также передает крутящий момент от раздаточной коробки к дифференциалу. Передаточное число силовой передачи 5,9. Натяжение цепных передач осуществляется с помощью промежуточных звездочек.

По воде амфибия передвигается с помощью гибкого винта, вращение которому передается от раздаточной коробки. Наибольшая скорость по шоссе 64 км/ч, по воде до 7 км/ч.

1 ЗвездаНельзя так писать о НивеНа троечкуНива хороша!Нива лучше всех! (Пока оценок нет)
Загрузка...
Закладка Постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован.